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Tetrad, Connection, and Metric as Independent 
Variables in Lagrangians of Micromorphic 
Continua Models 

H. M a k a r u k  1 

Received August 16, 1995 

In continuous media theory, models with a tetrad, a metric, or a connection field 
as the independent variable are widely used. Unification of these formalisms is 
presented. Models with a Lagrangian dependent on tetrad, connection, and metric 
fields treated as independent variables are investigated. The tetrad and the 
connection play the role of dynamic variables, but the metric is a nondynamic 
one. This means there are no derivatives of the metric in the Lagrangian. In a 
Polyakov-like way, as in string theory, the metric is eliminated from the Lagrangian 
and field equations. The Lagrangian takes a simple square-root form as the Nambu 
Lagrangian. It connects in a sense Lagrangians from the Gl(n, R)-invariant and 
Kijowski theories. The distinguished solutions, for a symmetric connection are 
semisimple Lie groups. The model gives the possibility of simultaneous 
description of fields of different natures and can be applied in the description of 
continuous media with complicated internal structure and in external fields. 

1. I N T R O D U C T I O N  

The mathemat ical  descript ion of anisotropic cont inuous  media,  for exam- 

ple, composites,  is a difficult  problem, because of  the need to take into 

account the entire micromorphic  structure of the media. On the other hand, 

solvable mathemat ical  models  which can take into account  this structure and 

possible interact ion with external fields are important  in the descriptions of  

materials as well  as in the calculat ion of  their mechanica l  properties. There 

is a need to consider  the internal  micromorphic  structure also from the 

geometrical  point  of  view. In some geometrical  models (Slawianowski ,  1990; 
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Trz~sowski and Slawianowski, 1990) of continuous media the independent 
variable is the tetrad field. 

In the classical formulation of Einstein's theory of relativity the role of 
the gravitational potential is played by the metric. There exist, however, other 
formulations of this theory where the role of the gravitational potential is 
played by the dynamic connection (Kijowski, 1978) or the tetrad field (Slawia- 
nowski, 1985; Makaruk, 1993, 1994). It was proved that these two theories 
are equivalent to the Einstein theory. In the case of the tetrad theory the 
metric is built of the tetrad field and the numerical metric vl.~ e = diag(l, - 1, 
- 1 ,  -1 )  using the recipe gCv = "qAB eagerly- We can also find many other 
field theories in which the independent variables are a metric, a connection, 
or a tetrad field. Every formalism has its own advantages and disadvantages. 
In one of these theories, the Gl(n, R)-invariant theory based on the dynamic 
tetrad field, there exists a class of distinguished solutions in the form of 
semisimple Lie algebras. 

In this paper we consider a model with Lagrangian dependent on a 
tetrad, a connection, and a metric treated as independent variables. The tetrad 
and the connection play the roles of dynamic variables, but the metric is a 
nondynamic one. The method of description of the problem and the way of 
finding solutions of the field equations are similar to those in the Gl(n, R)- 
invariant theory. 

1.1. Gl(n, R)-Invariant Theory 

Let us recall briefly the Gl(n, R)-invariant theory. The unique dynamic 
variable in the theory is a tetrad field. The motivation for such a theory 
comes from two sources. One is the existing tetrad description of gravitation. 
This description, however, employs an internal metric. Motivation also comes 
from the description of a continuum in terms of tetrad fields, but in which 
no length scale is distinguished. In other words, in this description there is 
no distinguished metric tensor. A posteriori we can note that the existence 
of semisimple Lie groups as canonical solutions was additional motivation 
for developing the theory. 

An interesting problem appears: Is the existence of solutions of this 
kind an exceptional feature of this theory, or are there other theories of similar 
type possessing this feature? We will show that the answer is positive for 
the theory with a tetrad, a connection, and a metric treated as independent 
variables which is introduced in this paper. 

The Gl(n, R)-invariant theory has two different formulations: a classical 
one and a Polyakov-like one. The basic object for the classical formulation 
of the theory is a manifold equipped only with its differential structure. For 
such a manifold there exist the following natural bundles: the tangent bundle 
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and the bundles that descend from the tangent bundle-- the  frame bundle, 
which is a principal bundle with the group Gl(n, R) acting transitively on 
fibers of the bundle, the dual bundle of coframes, and tensor bundles, which 
are built as the bundles associated to the frame bundle (among them are the 
tangent and the cotangent bundle). The basic field considered in the theory 
is the frame field, i.e., a section of the frame bundle. The action for this 
theory is built using only this field and its dual. This action, being a scalar 
density, has the characteristic form of a square root of a second-rank tensor 
built of the frame field in the following form: 

: =  ~/I det "Yij I (1) 

: =  +  s , stj, (2) 

sijk : =  eiAeA[j,k ] (3) 

where eiA and eAi are components of the frame and coframe field, respectively, 
A, B, C . . . .  are anholonomic indices, i, j ,  k . . . .  are holonomic indices, S~k 
is the torsion of the teleparallelism connection for a frame field, "y is a tensor 
playing the role of a metric, and 4SkitStjk is an object called in this theory a 
Killing tensor because its form is analogous to the biinvariant Killing metric 
defined on group manifolds. 

The Lagrangian depends on a tetrad (the frame field) and its derivatives 
by the torsion of the teleparallelism connection. Slawianowski introduced in 
this theory the generalized momentum H: 

ais a~ 
HA ij : =  Oeai,j aSP ij eP A (4) 

Hk ij : =  eAkHA ij (5) 

Field equations of the Gl(n, R)-invariant theory obtained by variation of the 
frame field are written in the covariant form using the teleparallelism connec- 
tion (Slawianowski, 1991): 

V j Hk ij = -- 2HkiJ S tlj (6) 

Slawianowski (1992) also introduced two other definitions for the formu- 
lation of the theorem concerning solutions of the field equations: 

�9 A tetrad field is Killing-nonsingular iff the Killing tensor for this 
field is nondegenerate. 

�9 A tetrad field is closed iff VS = 0; in other words, the torsion tensor 
is invariant with respect to the parallel transport along the field e. 
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Slawianowski (1992) proved the following theorem: 

Theorem. Every closed Killing-nonsingular tetrad field is a solution of 
field equations (6) of the Gl(n, R)-invariant theory. 

This theorem shows that the semisimple Lie groups are the solutions of 
the theory. Components of the torsion tensor are in this case equal to the 
structure constants of a corresponding Lie algebra (neglecting factors of the 
type 1/2). For Lie groups the trace for structure constants Ciai is equal to 
zero and this is equivalent to vanishing of the trace for the torsion tensor. 

The Killing tensor is identified with the Killing metric of the Lie algebra. 
In the case of the Lie algebra Killing-nonsingularity is equivalent to the 
semisimplicity condition. Semisimple Lie algebras are canonical solutions 
of the theory. 

The second version of the Gl(n, R)-invariant theory is a Polyakov-like 
formulation. The action in this theory plays a role similar to the role played 
by the Nambu action in the string theory. Nambu equations are classically 
equivalent to the equations implied by the Polyakov action. Similar equiva- 
lence for the two formulations of the Gl(n, R)-invariant theory was proved 
by Slawianowski (1992). Analogously to the method used by Polyakov, he 
introduced an action with the Lagrangian 

~, : gij'~ijV/~ "1- Av/g (7) 

where A is the cosmological constant. 
Variation of the metric leads to an algebraic dependence of gij on 3'q, 

which for an appropriate choice of the constant A is of the form 

gi /=  "Y,j (8) 

Substitution of (8) into (7) changes the Lagrangian density to the form (1) 
(modulo a constant). Obviously, this theory, being equivalent to the previous 
formulation, has canonical solutions in the form of local semisimple Lie 
groups. 

2. DESCRIPTION OF SPACE-TIME WITH METRIC,  
CONNECTION, AND TETRAD TREATED AS 
INDEPENDENT FIELDS 

Let us consider a theory with a metric, a connection, and a tetrad treated 
as independent variables. The Lagrangian is built of the following objects: 

�9 metric gAB 
�9 tetrad eAi (here cotetrad) 
�9 dynamic connection F/jK 
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which are subject to variation. 
The full connection of the system is 1/2 of the sum of the connection 

F~k and the teleparallelism connection for the tetrad field. The metric gas is 
not dynamic, which means the Lagrangian does not contain its derivatives. 
This approach is analogous to the Polyakov-like theory. From 

c3L 
- 0 ( 9 )  

Ogaa 

we obtain the dependence of gas on ~ and F/~k. 
The Lagrangian density in this theory is of the form 

= a~l  + b~2 + Aq~ (10) 

where 

where 

~ l  = gO~lo(e, F)ffg 

~ 2  = gORo(F)ff-g ( l l )  

= + 

I i l i Sijk = ~[e AeA[jM -I- S~'k] : ~[eaea{j,k} + Fi[jk]] 
go = ga~~ 

gOgtj = ~ 

R;j(F) is the Ricci tensor for the connection F (the teleparallelism connection 
gives the known contribution to R0), and ~/0 is built of the two WeitzenbtJck 
invariants. The third WeitzenbOck invariant is of different form and could 
not be included in the theory in the same manner as these two. 

The first step in our considerations is the variation of the action with 
respect to gas: 

o (  ago 
~"~1 = ~gij(~gaB)'Yijq/-g "1- gkt'ykl 8gij aga8 Bgaa (12) 

Then we express the variation of g0 in terms of the variation of gaa- We 
write this in detail here, because a similar scheme will be used in our 
further investigations: 

,61gijg~t j = ~i 

8gOgkj + gOSgkj = O Ig kt 

~gOBJ + gijgktBgjk = 0 

Bg~j = _ gikgjtBgkl = _ g~k g it~( g a e ~  et a) = -- gik gjtBgaa( ~ et]) 
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O( v/'g) _ l ij _ ~  " 

Ogij 2 ~ g  gg = g'J 

Ogij _ O(gcoeCie ~  _ eaieB. 
OgaB Ogae 

Analogously, using the derived relations, we can calculate the desired varia- 
tions of all components of the Lagrangian density: 

~ ,  = ~gas../ g6gkt~j ,  tg  As -- gikgJteakeS Hij] (13) 

~ z  = 8gao../ g[�89 gkl Rkt g An -- gikgJ' eat, eBt R~i] (14) 

The variation of the complete Lagrangian density is of the form 

5 ~  = (~gas)4~{(a '~l .  + bRkt)(�89 AB - gi~gJteaie~) + �89 AB} (15) 

The equations following from 5~lSgAe  = 0 are of the form 

(a'ykl + bRkt)(�89 AB -- gikgJteaieBj) + I s rAg  a = 0 (16) 

It is easier to consider the necessary condition for (16), which we obtain by 
taking the trace, i.e., by contracting with gaB: 

- 1 t(a~l~t + bRat) + A ~  = 0 

This condition can be written in the form 

n 
gkt(a~l~t + bRkt) - 

n - 2  

Therefore 

(17) 

(a~kt + bR,t) = oLg~a (19) 

Substitution of (19) into (18) gives a condition involving or: 

n 
not - - -  A (20) 

n - 2  

Normalizing or, a = 1, we obtain for the cosmological constant A = 2 - n. 
Then 

g~t = a~l~t + bRkt (21) 

Here the metric plays a role analogous to the role of the metric in the 
string theory in Polyakov's formulation. Substitution of this metric into the 
Lagrangian gives 

- - A  (18) 
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= gkt(a%t + bRkt),4~ + A v / g  

= 2~/det[a~/kl(e, 1-') + bKkl(F)] (22) 

where R,-j is the Ricci tensor, Kij is the symmetric part of the Ricci tensor, 
and a, b are constants. This is a theory with a dynamic tetrad and a dynamic 
connection. It has a Lagrangian with the characteristic form of a square root 
of a second-rank tensor. In general this tensor is not symmetric, however. 
This way, proceeding in the spirit of Polyakov's scheme, we eliminated from 
consideration the metric, which was from the very beginning a nondynamic 
variable in the theory. The general form of the Lagrangian density is very 
interesting in itself, in the sense that it connects the Lagrangians from the 
Slawianowski (1985) and Kijowski (1978) theories. 

2.1. Model with Symmetric Connection 

Let us make some limiting assumptions, which are of a similar kind to 
those in Kijowski's theory. Let us assume that the dynamic connection F~k 
is symmetric. For a symmetric connection the metric ~& built from the torsion 
tensor depends only on the tetrad field and does not depend on the connection. 
The Lagrangian density can be written in the form 

~. = 2~/la~lu(e) + bKij(F)l  

The field equations for the tetrad are given by 

(23) 

_ 0 f  o:e ) 
" ~ i  J~(geAi,j} (24) 

Let us introduce the generalized momentum H defined in the following way: 

d~  
HA ij "-- aeAi,j (25) 

tel 
HA i~ = (O~s (26) 

tel 
HA o = HaO(S(e), e, K(F)) (27) 

The momentum HA U defined above is antisymmetric in the holonomic indices: 

HA (ij) = 0 (28) 

The field equations obtained by variation of the Lagrangian (23) are of 
the form 
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tel tel 
O ~ / O e A i  = - (  O~;~[cgSPqr)e~ Siqr (29) 

tel tel 
Hai j , j  ---- --  (O~;~[OSPqr)e ~ Siqr (30) 

The next step is the calculation of a covariant derivative of the momenta H 
with respect to any connection F: 

[" tel ~" 
HAiJ~ = ( s i j , -  Sij.t)HA q + 2sJ.tHA it (31) 

Because the quantities HA 'j were defined earlier in (25) as generalized 
momenta, the equalities (31) are field equations for the Lagrangian density 
(23). 

tel 
If [" = F, the field equations (31) simplify to the form 

tel 
HAij;j = 2 S J ' I HA  il (32) 

For a Lie group the following relations are satisfied: 

S~, = 0 (33) 

tel 
VS = 0 (34) 

If additionally the condition 

tel 
VK0(F) = 0 (35) 

is satisfied; then this part of the field equations is satisfied. The rest of the 
field equations remain to be satisfied. Let us consider the equations 

OF~.k = 0 , ~  (36) 

o~ oSe OKr, 
ors.  OKr, ors, 

The next step is the calculation of the quantity OKr,/OF~.k. We introduce the 

05e 
OF~k,t (37) 

O~ OKr, 
p/~l - _ _  _ _  (38) 

OKr, ori++jk.t 

generalized momentum defined as follows: 

P/kt(S(e), K(F)) . -  
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Then we calculate OKJOF~.k,t and OK~JOF~k. After some manipulations we 
obtain 

O~ aSe F' ase a ~  a ~  
0r,;  - + ,, aK%G - r ,r - rJri a - G  ( 3 9 )  

a ~  _ a ~  (40)  PC' = ~" OKj~ ~/ OK~----~, 

The field equations become 

pikt = g/Fk(~.~) a ~  a ~  o ~  o ~  (41) 
O K r----~k 

Further we compute the covariant derivative of a generalized momentum 
with respect to any connection ['Jkt. In general, this connection is different 
from all connections introduced earlier. In terms of the general connection, 
the field equations can be written in the form 

P/kt d 8/[rkcrs) ^ k O~ O~ = -- F (-)1 ~ r s  + [Fmmi -- I''m*] aKjk 

a~ o~ o~ 
+ [Fk,.i - [ '%] ~ + 2~Ji,. + 2~t. 

OK.,~ aKj~ 

_ 2~/g~t., 05r 
aKk,. (42) 

p/kl = p/kt(S(e), K(F)) (43) 

Next we take 1 ~ = F. As a result the field equations simplify to 

a ~  2S t a ~  _ 2~/Stt., a ~  p/kt;t = 2S Jim OKkm + li aKj~k OK~ (44) 

where the semicolon denotes the covariant derivative with respect to the 
connection F. 

For the symmetric connection F the field equations take the form 

P/~t.t = 0 (45) 

These field equations are satisfied, e.g., in the case when the following 
relations hold: 

F 

VS = 0 (46) 

F 
VK = 0 (47) 
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Let us consider the conditions of the given form in the Lagrangian (23). We 
tel 

compute the quantities O~/OS~i, which are present in the definition of the 
generalized momenta Ha 0 in (25): 

tel 
O~lOS~.i = a~/det(aT + bK)(a~l + bK)JnS~.o (48) 

p/kt = _b ~/det(a~ + bIO(a~l + bK)Jkgli (49) 
2 

_ b x/det(a~ / + bIO(a~l + bK)kt~ii 
2 

By analogy with Kijowski's theory, we define the metric as a canonical 
momentum conjugate to the connection, by the formulas 

ogJiC3"~" _ .  v/r~gij = 2b x/det(aT + bK)(a~ I + bg)i  j ( 5 0 )  

tel a 
o e/os 5, =  gJ"S% (51) 

a 
Ha ii = -~ v~gJ'~Si,~pe ~ (52) 

p ? ,  =  gjk _ (53) 

The equation 

Ha~% = 0 (54) 
,.j 

is satisfied when the teleparallelism connection is metric w.r.t, the metric g,-j 
r 

introduced this way and VS = 0. These conditions are satisfied by Lie groups. 
The fact that F is metric is a conclusion in our model, not an assumption. 
This follows from equation (35). The condition of nondegeneracy of the 
Lagrangian forces these groups to be semisimple Lie groups. 

3. SUMMARY 

A theory with a Lagrangian dependent on three variables, a tetrad, a 
connection, and a metric, was formulated and investigated. The tetrad field 
and the connection were treated as independent variables; the tetrad field and 
the connection are dynamic variables, the metric is a nondynamic variable. 
The theory is of Polyakov type. Proceeding in the way typical for Polyakov- 
like theories, one can express the metric by residual variables after varying 
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the Lagrangian with respect to the metric (as in string theory). As a result 
the metric disappears from further considerations. The resulting Lagrangian 
depends only on the tetrad and the connection. It can be expressed in the 
form of a square root of the determinant of a second-rank covariant tensor. 
Then this model was considered with the connection assumed to be symmetric. 
The Lagrangian density in this case takes the form (23). It was proved that 
in this case semisimple Lie groups are distinguished solutions, as in the Gl(n, 
R)-invariant theory. 

The model is a generalization of models in which the independent 
variable is one of the fields: Slawianowski's theory, in which the only indepen- 
dent variable is the tetrad field, and the Kijowski's theory, in which the only 
independent variable is the dynamic connection. The formal relationship of 
all these models was presented. 

The model is highly general and gives the possibility of finding exact 
solutions of the equations of motion in the description of anisotropic continu- 
ous media. There are degrees of freedom of three different types in the 
presented formalism. It can be applied to anisotropic continuous media in 
external fields. 
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